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Abstract Small-angle X-ray scattering and nuclear magnetic
resonance were used to investigate the structural change of
calcium-bound calmodulin (Ca2+/CaM) in solution upon binding
to its antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesul-
fonamide (W-7). The radius of gyration was 17.4 þ 0.3 Aî for
Ca2+/CaM-W-7 with a molar ratio of 1:5 and 20.3 þ 0.7 Aî for
Ca2+/CaM. Comparison of the radius of gyration and the pair
distance distribution function of the Ca2+/CaM-W-7 complex
with those of other complexes indicates that binding of two W-7
molecules induces a globular shape for Ca2+/CaM, probably
caused by an inter-domain compaction. The results suggest a
tendency for Ca2+/CaM to form a globular structure in solution,
which is inducible by a small compound like W-7.
z 1999 Federation of European Biochemical Societies.
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1. Introduction

Calmodulin (CaM) is a ubiquitous Ca2�-binding protein of
148 residues that regulates a variety of physiological processes
in a Ca2�-dependent manner [1]. The regulation is achieved
through the interaction of Ca2�-bound CaM (Ca2�/CaM)
with a large number of target enzymes [2^4]. The Ca2�/CaM
molecule adopts an `elongated' structure in which the two
globular domains are connected by a highly £exible linker
[5^11], while the structures of Ca2�/CaM complexed with a
peptide from target enzymes assume a compact globular shape
caused by the bending of the domain linker [12^14]. These
structural studies suggest that the £exibility of the domain
linker plays an important role in the target recognition.

CaM antagonists such as N-(6-aminohexyl)-5-chloro-
1-naphthalenesulfonamide (W-7) and 10-[3-(4-methylpipera-
zin-1-yl)propyl]-2-(tri£uoromethyl)-10H-phenothiazine (tri-
£uoperazine, TFP) have been used extensively to study
Ca2�/CaM-dependent activation of various enzymes (Fig. 1).
X-ray crystal structure analysis revealed that Ca2�/CaM-TFP
complexes (CaM:TFP = 1:1 and 1:4) adopt a globular struc-
ture similar to that of Ca2�/CaM-target peptide complexes
[12^16]. NMR analyses demonstrated that two antagonist
molecules bind to one Ca2�/CaM molecule with high a¤nity
[17,18]. However, the lack of NOEs between the two domains
precluded the determination of their relative orientation [18].
In order to investigate whether the binding of W-7 induces a
globular structure similar to the Ca2�/CaM-TFP complex, we
applied small-angle X-ray scattering (SAXS) as well as NMR
spectroscopy. The results provide evidence that a small organ-
ic compound such as W-7 can induce inter-domain compac-
tion of Ca2�/CaM even in solution.

2. Materials and methods

2.1. Sample preparation
W-7 was synthesized in bulk in the previous study and was carefully

stored in our laboratory [19]. Uniformly 13C/15N-labeled or non-la-
beled recombinant Xenopus laevis CaM was expressed in Escherichia
coli and puri¢ed to homogeneity as previously described [20]. For
SAXS experiments, non-labeled CaM was dissolved in PIPES bu¡er
(50 mM PIPES-NaOH, pH 6.5), followed by dialysis against the bu¡-
er containing 10 mM CaCl2. The protein concentration was examined
by the method of Bradford [21]. The W-7 powder was dissolved in
dimethyl sulfoxide (DMSO) and added to the CaM solution. The ¢nal
concentration of DMSO was set to 1% (v/v) for all samples. The
solutions for Ca2�/CaM and Ca2�/CaM complexed with ¢ve equiva-
lents of W-7 were prepared at protein concentrations of 6.0, 9.0, 12.0,
and 16.2 mg/ml. Moreover, solutions for the Ca2�/CaM-W-7 mixtures
with molar ratios of 1:1, 1:2, 1:3, and 1:4 were each prepared at a
protein concentration of 9.0 mg/ml. For NMR experiments, 13C/15N-
labeled CaM was dissolved in unbu¡ered 0.4 ml 95% H2O/5% D2O or
99.99% D2O solution containing 0.1 M KCl and 10.6 mM CaCl2. The
pH/pD values of the samples were 6.8 without consideration of iso-
tope e¡ects. The protein concentration was 1.5 mM.

2.2. Small-angle X-ray scattering
The measurements were performed using synchrotron orbital radi-

ation with an instrument for SAXS installed at BL-10C of Photon
Factory, Tsukuba [22]. An X-ray wavelength of 1.488 Aî was selected.
The samples were contained in a quartz cell with a volume of 80 Wl,
and the temperature was maintained at 35 þ 0.1³C by circulating water
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through the sample holder. The reciprocal parameter, Q, equal to
4Zsina/V, was calibrated by the observation of peaks from dried chick-
en collagen, where 2a is the scattering angle and V is the X-ray wave-
length. Scattering data were collected for 600 s at individual protein
concentrations and for 1800 s at only 6.0 mg/ml.

Two methods of data analysis were used. The ¢rst method is that of
Guinier [23] which gives the radius of gyration, Rg. The range of Q
(Aî 31) used for Guinier plots was 3.44U1032 to 6.88U1032. The sec-
ond method is the calculation of pair distance distribution function,
p(r), which is the frequency of the distances r within a macromolecule
obtained by combining any volume element with any other volume
element [24]. The p(r) is calculated by a direct Fourier transformation
[24]. Data to Q (Aî 31) = 0.7 were used for p(r) analysis. The maximal
pair distance, dmax, was also estimated from the p(r) function; p(r)
becomes zero at values of r equal to or greater than the maximum
dmax of the particle. Furthermore, Rg and p(r) were calculated from
atomic coordinates of the Ca2�/CaM-TFP complexes in order to com-
pare the X-ray values for the Ca2�/CaM-W-7 complex. Details of the
calculation method are given elsewhere [25,26].

2.3. NMR spectroscopy
All of the NMR spectra were measured at 35³C on a Bruker AMX-

600 spectrometer. W-7 was titrated in aliquots of 0.33 protein equiv-
alent into a uniformly 13C/15N-labeled sample of the protein. After the
addition of each aliquot of W-7, 1D 1H, 2D 15N-1H HSQC [27,28],
and 2D 13C-1H CT-HSQC [29] spectra were acquired. Finally, spectra
with 0, 0.33, 0.66, 1.0, 1.33, 1.66, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, and 6.0
equivalents of W-7 to CaM were recorded. Spectral changes for 2D
13C-1H CT-HSQC were previously reported [18].

3. Results

3.1. The radius of gyration and the p(r) function
Fig. 2 shows the Guinier plots for Ca2�/CaM alone and

Ca2�/CaM in the presence of W-7 with the molar ratio of
1:5 at four protein concentrations. Rg as a function of protein
is shown in Fig. 3. Rg values of the Ca2�/CaM-W-7 complex
and Ca2�/CaM at zero concentration are given in Table 1.
For comparison, Table 1 also contains Rg values for other
Ca2�/CaM complexes reported by other researchers. The Rg

value for Ca2�/CaM-W-7 complex (17.4 þ 0.3 Aî ) is compara-
ble to the calculated Rg from atomic coordinates of Ca2�/
CaM-TFP complex (1:4) which is smaller due to the lack of
atomic coordinates for the ¢rst two residues [16]. It is also
consistent or comparable to Rg values of other Ca2�/CaM
complexes containing mastoparan [25,30], melittin [31], cyclo-
sporin-A [32], substance P [33] and respective synthetic pep-
tide corresponding to the calmodulin-binding domains of
MLCK (M13) [34], phosphorylase kinase (RhK5) [35] and
Ca2� pump (C24W) [36]. The Rg value for Ca2�/CaM
(20.3 þ 0.7 Aî ) is also comparable to the values reported pre-
viously [25,31^36]. Fig. 4 shows Rg values as a function of
molar ratio of Ca2�/CaM and W-7 at 9.0 mg/ml. A drastic

decrease in the Rg upon W-7 binding to Ca2�/CaM ¢nishes at
the ratio of 1:2.

Fig. 5 shows the p(r) functions for Ca2�/CaM alone and
Ca2�/CaM in the presence of W-7. The p(r) function for the
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Fig. 1. Chemical structures of W-7 and TFP.

Fig. 2. Guinier plots for Ca2�/CaM-W-7 complex (Ca2�/CaM:W-
7 = 1:5) and Ca2�/CaM at various protein concentrations. a: Ca2�/
CaM-W-7 complex. b: Ca2�/CaM. 1, 6.0 mg/ml; 2, 9.0 mg/ml;
3, 12.0 mg/ml; 4, 16.2 mg/ml.
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Ca2�/CaM alone has a peak near 20 Aî (principally represent-
ing interatomic distances within each domain of Ca2�/CaM)
and a shoulder at near 40 Aî (mainly representing inter-do-
main distances) [7,25]. By contrast, the shoulder near 40 Aî

disappears for the Ca2�/CaM-W-7 complex. Its dmax is about
14 Aî smaller than that for the Ca2�/CaM alone. These char-
acteristic behaviors are also seen in the p(r) function calcu-
lated from the atomic coordinates of the crystal structure of
Ca2�/CaM-TFP complex [15,16] and from the SAXS pro¢les
of other complexes including Ca2�/CaM-M13 complex
[25,31,32,34^36]. The determination of the three-dimensional
structure indicated that Ca2�/CaM-TFP and -M13 complexes
are in a globular form. Thus, the present data indicate that
Ca2�/CaM complexed with W-7 adopts a globular structure
similar to those of other complexes.

3.2. NMR spectral changes
The NMR spectral changes in the 15N-1H HSQC spectra of

uniformly 13C/15N-labeled CaM were monitored upon addi-
tion of unlabeled W-7. Fig. 6 shows the selected portions of
the spectra for Ca2�/CaM:W-7 molar ratios from 1:0 to 1:3.
Most of the HSQC peaks in each of the two CaM domains
(Ala-1 to Lys-75, Glu-82 to Lys-148) were gradually shifted
with little change in their intensities, indicating that the con-
formational exchange rate between W-7 bound state and un-
bound state is fast on the NMR time scale. In contrast, the

signals from Met-76, Asp-78, Thr-79, Asp-80, Ser-81 and Glu-
82 in the domain linker are broadened upon addition of W-7.
This broadening indicates that the conformational exchange
rate of the linker is slower than that in each domain.

4. Discussion

4.1. Globular structure of Ca2+/CaM-W-7 complex
The SAXS analysis shows that the binding of two W-7

molecules induces drastic structural change in Ca2�/CaM;
the overall shape changes from an elongated structure to a
compact globular structure in solution. Our previous NMR
analysis [18] showed that the backbone conformation in each
CaM domain remains essentially unchanged upon binding of
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Fig. 3. The radius of gyration, Rg, for Ca2�/CaM-W-7 complex
(Ca2�/CaM:W-7 = 1:5) and Ca2�/CaM as a function of the protein
concentration. a, Ca2�/CaM-W-7 complex; E, Ca2�/CaM.

Fig. 4. The radius of gyration, Rg, as a function of the molar ratio
of W-7 to Ca2�/CaM at the protein concentration of 9.0 mg/ml.

Fig. 5. Pair distance distribution function, p(r), for Ca2�/CaM-W-7
complex (Ca2�/CaM:W-7 = 1:5) and Ca2�/CaM. a, Ca2�/CaM-W-7
complex; E, Ca2�/CaM.

Fig. 6. NMR spectral changes for Ca2�/CaM amide groups upon
W-7 binding. Spectra of the same region, which are for Ca2�/CaM-
W-7 = 1:0, 1:0.33, 1:0.66, 1:1, 1:2, 1:3, were superimposed. NMR
signals in each CaM domain and in the domain linker are drawn in
black and red, respectively.
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W-7. However, line broadening of NMR signals was observed
for the residues of the domain linker (Met-76, Asp-78, Thr-79,
Asp-80, Ser-81 and Glu-82) upon W-7 binding. Thus, it is
likely that the globular structure is caused by bending of the
£exible linker. A similar bending was observed in the crystal
structure of Ca2�/CaM-TFP complex [15,16], and in both
solution and crystal structures of Ca2�/CaM complexed with
a peptide from skeletal muscle and smooth muscle MLCK
and brain CaM-KII [12^14]. The previous NMR study [18]
showed no inter-domain NOE in Ca2�/CaM complexed with
W-7, suggesting that the relative orientation of the two do-
mains is not always ¢xed due to a conformational change
between various orientations. However, the SAXS data indi-
cate that the time- and spatially averaged shape of the Ca2�/
CaM-W-7 complex represents a compact, globular one. The
lack of NOE is consistent with the notion that the inter-do-
main interaction is unstable and involves a rapid exchange
between the associated and dissociated states. Evidence for
the inter-domain interaction of CaM has been obtained by
proteolytic footprinting studies [37], in which a conformation-
al state with a short life-time could be trapped.

The NMR structure of Ca2�/CaM-W-7 complex suggested
that W-7 inhibits the CaM-mediated activation of target pro-
teins by blocking the hydrophobic pocket [18]. The present
results show that binding of two W-7 molecules induces com-
paction between the two domains of CaM. In addition to the
direct interaction of W-7 with the hydrophobic pocket of
Ca2�/CaM, the induced globular structure of Ca2�/CaM
might also contribute to inhibition of activity, since the
CaM binding region of the target enzyme becomes less acces-
sible to Ca2�/CaM in the compact conformation.

4.2. Comparison with globular structure of Ca2+/CaM-TFP
complex

An inter-domain compaction of Ca2�/CaM has been ob-
served previously in the crystal structures of the Ca2�/CaM-
TFP complex [15,16]. There are di¡erences in the TFP binding
stoichiometry between the two structures (CaM:TFP = 1:1
and 1:4), probably due to di¡erences in the crystallization
conditions. On the other hand, the NMR signals of both
CaM domains moved by similar amounts during the addition
of the ¢rst two equivalents of TFP, suggesting that the bind-
ing a¤nities of either CaM domain to TFP is indistinguish-
able in solution [17]. Thus, it has been unclear yet how many

TFP molecules induce an inter-domain compaction of CaM in
solution. However, both crystal structures show a similar
CaM conformation induced by TFP binding (backbone super-
position of the two structures using CaM residues 9^73 and
84^145 gives a RMS deviation value of 0.39 Aî ), prompting us
to use both structures for comparison.

Although the chemical structure of W-7 di¡ers from that of
TFP, both contain a hydrophobic aromatic group with pos-
itively charged group via the aliphatic chain (Fig. 1). In the
Ca2�/CaM-W-7 complex, the naphthalene ring of the two W-
7 molecules interact intimately with the hydrophobic pocket
of the two CaM domains [18], whereas only one end of TFP
phenothiazine ring is inserted into the pocket of Ca2�/CaM-
TFP complex [15,16]. This hydrophobic pocket can accommo-
date van der Waals contacts with such chemically di¡erent
groups. This high adaptability of the CaM hydrophobic pock-
et originates from highly abundant methionine residues with a
£exible and polarizable side chain [18].

It has been suggested that positively charged nitrogen
atoms of the TFP piperazine group participate in electrostatic
interactions with negatively charged residues of Ca2�/CaM
such as Glu-127, reducing an electrostatic repulsion between
both domains [16]. Similarly, electrostatic interactions be-
tween the positively charged nitrogen atom of the W-7 amino-
hexyl group and negatively charged residues within Ca2�/
CaM may contribute to the stabilization of the globular struc-
ture in the complex. Most probable partners in CaM include
Glu-14 and Glu-54 in the N-terminal domain and Glu-87,
Glu-114, and Glu-127 in the C-terminal domain.

The methylene groups of W-7 in the Ca2�/CaM-W-7 com-
plex were suggested to be unimportant in the speci¢c interac-
tions with Ca2�/CaM [18]. However, it is noted that the num-
ber of the methylene groups in W-7 derivatives is proportional
to their binding a¤nity to Ca2�/CaM [38]. In the structure of
Ca2�/CaM-TFP complex, the methylene groups of TFP make
contacts with the hydrophobic side chains of Ca2�/CaM
around the hydrophobic pockets. Similarly, the methylene
groups of W-7 might contribute to the W-7 binding to
Ca2�/CaM by van der Waals interactions.

4.3. Comparison with Ca2+/CaM-target peptide complex
The globular structures of Ca2�/CaM in complex with its

target peptide from skeletal/smooth muscle MLCK or brain
CaM-KII are stabilized by extensive van der Waals interac-
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Table 1
Radius of gyration Rg and maximum dimension dmax for Ca2�/CaM and its complexes

Rg [Aî ] dmax [Aî ]

Ca2�/CaMa 20.3 þ 0.7 61
Ca2�/CaM-W-7a 17.4 þ 0.3 47

Ca2�/CaMa [31] 20.17 þ 0.16 62.5
Ca2�/CaMa [25] 21.5 þ 0.3 69
Ca2�/CaMa [36] 21.36 þ 0.10 62.5 þ 2.5
Ca2�/CaM-TFPb [16] 15.92 46.0
Ca2�/CaM-M13a [34] 16.4 þ 0.2 49
Ca2�/CaM-RhK5a [35] 17.3 þ 0.2 49
Ca2�/CaM-C24Wa [36] 17.2 þ 0.3 52.5 þ 2.5
Ca2�/CaM-mastoparana [25] 17.8 þ 0.3 55
Ca2�/CaM-melittina [31] 17.85 þ 0.13 47.5
Ca2�/CaM-substance Pa [33] 17.2 þ 0.3 ^
aValues at zero protein concentration obtained by SAXS experiment.
bValues calculated from the atomic coordinates of the crystal structure.
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tions in addition to electrostatic interactions, where the target
peptide forming K-helix binds to both the CaM domains si-
multaneously [12^14]. In contrast, a similar globular structure
of Ca2�/CaM is induced by the main interaction of W-7 with
the hydrophobic pocket of each CaM domain, though the
relative orientation of the two domains is not always ¢xed.
This is re£ected in the binding a¤nity of W-7 to Ca2�/CaM,
which is about 103 times lower than the binding a¤nity of the
target peptides [38^42]. Thus it is indicated that such weaker
interactions as those of W-7 can induce the globular structure
of Ca2�/CaM in solution and, therefore, the bridging of both
domains by a polypeptide chain of the target molecule is not
necessary for the formation of the globular structure.

4.4. Conclusion
The present SAXS results indicate that the binding of small

organic compound W-7 to Ca2�/CaM induces a globular
structure in solution, which is suggested to be caused by the
bending of the £exible domain linker of Ca2�/CaM. In con-
trast to the ¢xed orientation of the two CaM domains bound
to a target peptide, the relative orientation of the CaM do-
mains is £exible in the Ca2�/CaM-W-7 complex, though the
time-averaged shape remains globular and compact. These
results indicate that the dynamics and relative orientation of
two CaM domains can vary signi¢cantly in solution upon
binding to various target molecules including antagonists
such as W-7.
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